
SINGELTON

config
database instance
file instance
Shared resources
global state
management

UsageWhen: 1 and only 1 instance of a
class.

Reference code

Drawbacks: antipattern, breaks
good practice, difficult to test,
global state

MVC

PHP DESIGN
PATTERNS

Practical Cheat Sheet

www.ApplicableProgramming.com

ADAPTER

When: Separation of concerns in UI
applications by splitting application in three
main areas.
Usage: Web applications, GUI frameworks.
Key: Model <-> View <-> Controller

Model: Data & logic
View: UI representation
Controller: User input handling

When: Make different interfaces work together.
Adapt one interface to already existing
ecosystem.
Usage: Integrate legacy or external systems,
refactor code.

Drawbacks: Increased vode complexity

When: a class needs to use another class - Reduce tight
coupling between classes
Usage: controllers, services etc. Improve modularity, enable
testing
Key: Inject dependencies via constructor or setter
Reference code:

DEPENDENCY INJECTION:

http://www.applicableprogramming.com/

ACTIVE RECORD - OBJECT
RELATION MAPPER

Problem: Simplify CRUD operations with a database.
Usage: Object-relational mapping, data access.
Key: Model (represents table)

STRATEGY

Problem: changing different algorithms at runtime.
Usage: different services
Key: Context <-> Strategy

FACADE

Problem: Simplify complex operations with a unified
interface. (usually operations that include multiple
objects or classes)
Usage: Hide implementation details, simplifies
usage.

DECORATOR

Problem: Add or change functionality to objects
dynamically during runtime, in different combinations
Usage: Unpredictable combination of changes
(products, services doing calculations)
Key: Decorator <-> Component

Problem: communication between many objects
(that could also be missing from the system).
Usage: Event handling, plugins, dynamic codebase.
Key: Subject <-> Observer

OBSERVER

Drawbacks: Limited flexibility (one-to-one mapping
with database tables). Can lead to "fat models"
(models with too much logic). Difficult with exceptions
to the main functionality.

Drawbacks: May hide necessary details in some
cases, additional layer

Drawbacks: Memory leaks (if observers aren't
detached), performance issues (with many observers)

Drawbacks: Code complexity, difficult testing,
Potential performance overhead (multiple layers of
decoration).

Drawbacks: Increased number of objects (one per
strategy).

Problem: Decouple object creation from its usage.
Hide complex object creation or configuration from
the object consumer.
Usage: Flexible and dynamic object instantiation.
Key: Creator <-> Product

Drawbacks: Code complexity: (additional classes or
interfaces). Requires subclassing to create new
products

SIMPLE FACTORY

