PHP DESIGN
PATTERNS &

Practical Cheat Sheet

www.ApplicableProgramming.com

=
=
S

= When: Separation of concerns in Ul
Eapplications by splitting application in three
" main areas.

= Usage: Web applications, GUI framewaorks.

= Key: Model <-> View <-> Controller

= Model: Data & logic
EView: Ul representation
= Controller: User input handling

=
>
s
>
=
=

When: Make different interfaces work together.
Adapt one interface to already existing
ecosystem.

Usage: Integrate legacy or external systems,
refactor code.

interface Target {
request();

}

class Adaptee {
specificRequest();

}

class Adapter implements Target {
/* adapt Adaptee to Target */
request(Sadaptee){
Sadaptee->specificRequest();

}

Drawbacks: Increased vode complexity

é SINGELTON
When: 1 and only 1 instance of a Usage
class. e config

¢ database instance
Drawbacks: antipattern, breaks © flleinstance
good practice, difficult to test, ©® Sharedresources
global state e global state

management

Reference code

Class Registry
{

private static Sinstance = null;
public static function instance(): self
{
self::8instance = is_null(self::8instance)
? new self() : self::Sinstance;
return self::$instance;

DEPENDENCY INJECTION:

When: a class needs to use another class - Reduce tight
coupling between classes

Usage: controllers, services etc. Improve modularity, enable
testing

Key: Inject dependencies via constructor or setter

Reference code:

class User(Sdb){
private Sdatabase;
/* constructor injection */
public function __construct(Sdatabase){
// set the S$database
Sthis->database = Sdatabase;
}
/* setter injection */
public function setService(S$service) {
// set and maybe use the $service
}
}

// usage

Sdatabase = new Database();
$service = new Service();
Suser = new User(S$database);
Suser->setService($service);

BN EEE

http://www.applicableprogramming.com/

(AR R EREEREEREREERREEREEREERNRERERENENERERERERNNRHN"

? ' ACTIVE RECORD - OBJECT
" RELATION MAPPER

Problem: Simplify CRUD operations with a database.
Usage: Object-relational mapping, data access.
Key: Model (represents table)

class Model {

public function find(); // Retrieve
public function insert(); // Create
public function update(); // Update
public function delete(); // Delete

}

Drawbacks: Limited flexibility (one-to-one mapping =
with database tables). Can lead to "fat models" 1
(models with too much logic). Difficult with exceptions =
to the main functionality.

FACADE .

Problem: Simplify complex operations with a unified
interface. (usually operations that include multiple
= objects or classes)

= Usage: Hide implementation details,
usage.

)

simplifies

class Facade {
private S$subsystemA;
private S$subsystemB;
public function operation() {
/* do something with subsystems =*/

}

~

Drawbacks: May hide necessary details in some
= cases, additional layer

E{éjL DECORATOR :

Problem: Add or change functionality to objects
dynamically during runtime, in different combinations
Usage: Unpredictable combination of changes
(products, services doing calculations)
Key: Decorator <-> Component
interface Component { operation(); }
class Decorator implements Component {

private Scomponent;

public __construct($component)

public function operation() {

/* change or add behavior =*/

}
}
Drawbacks: Code complexity, difficult testing,
Potential performance overhead (multiple layers of
decoration).

. SIMPLE FACTORY

Problem: Decouple object creation from its usage. =
Hide complex object creation or configuration from *®
the object consumer.

Usage: Flexible and dynamic object instantiation.
Key: Creator <-> Product

class Creator {
createComplexProduct();
}
class Product {
/* product that is complex to create
*/
oneOfManyConfigMethods();
}

Drawbacks: Code complexity: (additional classes or 3
interfaces). Requires subclassing to create new a
products

LA AR R RERRERRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRER]
7Y

(9°%) OBSERVER "

(that could also be missing from the system).
Usage: Event handling, plugins, dynamic codebase.
Key: Subject <-> Observer

interface Subject {
attach(); detach(); notify();
}

interface Observer { update(); }

Drawbacks: Memory leaks (if observers aren't
. detached), performance issues (with many observers) =

5] STRATEGY :

= Problem: changing different algorithms at runtime.
= Usage: different services
= Key: Context <-> Strategy

class Strategy { execute(); }

class Context {
private Sstrategy;
public function setStrategy($strategy){
Sthis->strategy = Sstrategy;
}
public function doSomething(){
Sthis->strategy->execute();
}
}

Drawbacks: Increased number of objects (one per
= strategy).

